Standard Young tableaux and colored Motzkin paths

نویسندگان

  • Sen-Peng Eu
  • Tung-Shan Fu
  • Justin T. Hou
  • Te-Wei Hsu
چکیده

In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the n-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length n. This result not only gives a lattice path interpretation of the standard Young tableaux but also reveals an unexpected intrinsic relation between the set of SYTs with at most 2d+ 1 rows and the set of SYTs with at most 2d rows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting peaks and valleys in k-colored Motzkin paths

This paper deals with the enumeration of k-colored Motzkin paths with a fixed number of (left and right) peaks and valleys. Further enumeration results are obtained when peaks and valleys are counted at low and high level. Many well-known results for Dyck paths are obtained as special cases.

متن کامل

Hilly poor noncrossing partitions and (2, 3)-Motzkin paths

A hilly poor noncrossing partition is a noncrossing partition with the properties : (1) each block has at most two elements, (2) in its linear representation, any isolated vertex is covered by some arc. This paper defines basic pairs as a combinatorial object and gives the number of hilly poor noncrossing partitions with n blocks, which is closely related to Maximal Davenport-Schinzel sequences...

متن کامل

Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers

An inverted semistandard Young tableau is a row-standard tableau along with a collection of inversion pairs that quantify how far the tableau is from being column semistandard. Such a tableau with precisely k inversion pairs is said to be a k-inverted semistandard Young tableau. Building upon earlier work by Fresse and the author, this paper develops generating functions for the numbers of kinv...

متن کامل

Matrix identities on weighted partial Motzkin paths

We give a combinatorial interpretation of a matrix identity on Catalan numbers and the sequence (1, 4, 4, 4, . . .) which has been derived by Shapiro, Woan and Getu by using Riordan arrays. By giving a bijection between weighted partial Motzkin paths with an elevation line and weighted free Motzkin paths, we find a matrix identity on the number of weighted Motzkin paths and the sequence (1, k, ...

متن کامل

Moments of Askey-Wilson polynomials

New formulas for the n moment μn(a, b, c, d; q) of the Askey-Wilson polynomials are given. These are derived using analytic techniques, and by considering three combinatorial models for the moments: Motzkin paths, matchings, and staircase tableaux. A related positivity theorem is given and another one is conjectured. Résumé. Nous présentons de nouvelles formules pour les n-moments μn(a, b, c, d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2013